Part Number Hot Search : 
MAC15A6 FLT310 6800P S6C0641 470K105X M38067 B340A ATTIN
Product Description
Full Text Search
 

To Download V23990-K220-A40-0B-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-k220-a40-pm miniskiip? 2 pim 1200v / 35a solderless interconnection trench fieldstop igbt4 technology industrial motor drives v23990-k220-a40-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v ma ximum junction temperature t j max 1 5 0 c t1,t2,t3,t4,t5,t6,t7 105 t sc t j 1 50c 1 0 s v cc v ge =15v 80 0 v 38 t h =80c 9 6 t h = 80c 17 5 p tot t h =80c 5 6 d c forward current surge forward current power dissipation per diode i 2 t t j =t j max w ma ximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings g a te-emitter peak voltage a v c v a types i 2 t-value maximum ratings i fav a 2 s i fsm condition t j =t j max t p =10ms 27 0 d8,d9,d10,d11,d12,d13 a t h =80c 37 3 60 t j =150c features miniskiip ? 2 housing target applications schematic collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c 1200 2 0 w a t j =t j max t j =t j max t p limited by t j max copyright vincotech 1 revision: 3.1
v23990-k220-a40-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition d1,d2,d3,d4,d5,d6,d7 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12.7 mm min 12.7 mm t h =80c 7 7 2 25 33 t h =80c 12 00 clearance insulation voltage creepage distance t op operation temperature under switching condition c s torage temperature t stg -40+125 c -40+(tjmax - 25) w power dissipation per diode p tot dc forward current a t j =t j max t p =10ms half sine a i f v rrm peak repetitive reverse voltage i frm t j max r e petitive peak forward current v 175 maximum junction temperature c t j =t j max copyright vincotech 2 revision: 3.1
v23990-k220-a40-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,08 1,35 tj=125c 1,03 tj=25c 0,89 tj=125c 0,78 tj=25c 7,56 tj=125c 10,20 tj=25c 0,01 tj=125c 1,1 thermal resistance chip to heatsink per chip r thjh 1,25 tj=25c 5 5,8 6,5 tj=150c tj=25c 1,6 1,87 2,15 tj=150c 2,3 tj=25c 0,05 tj=150c tj=25c 300 tj=150c tj=25c 78 tj=150c 79 tj=25c 24 tj=150c 29 tj=25c 196 tj=150c 268 tj=25c 77 tj=150c 131 tj=25c 2,54 tj=150c 3,84 tj=25c 1,92 tj=150c 3,18 thermal resistance chip to heatsink per chip r thjh 1 tj=25c 1,5 2,36 2,65 tj=150c 2,34 tj=25c 16 tj=150c 22,6 tj=25c 336 tj=150c 550 tj=25c 2,2 tj=150c 5,36 di(rec)max tj=25c 63 /dt tj=150c 67 tj=25c 0,77 tj=150c 2,07 thermal resistance chip to heatsink per chip r thjh 1,2 e 1,731*10-5 t=25c vincotech ntc reference b-value b(25/100) tol. % 1/k2 7,635*10-3 1/k 1000 a-value b(25/50) tol. % t=25c thermal grease thickness 50 m =1w/mk k/ w t hermal grease thickness 50 m =1w/mk k/ w n s 35 a 600 mws ns ma v v p f 1 92 1950 t=25c c mws a/s na thermistor thermal grease th i ckness 50 m =1w/mk 25 ra ted resistance deviation of r100 r ? r/r r100=1670 mw/k r1 0 0 p power dissipation constant 40 35 1 200 0 0,0012 15 35 15 600 integrated gate resistor t1,t2,t3,t4,t5,t6,t7 gate emitter threshold voltage ga t e charge reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge d1,d2,d3,d4,d5,d6,d7 diode forward voltage 35 e r ec i rrm v f 15 peak reverse recovery current rgoff=16 rgon=16 0 f= 1 mhz reverse current i r 1500 k/w v v m ma characteristic values forward voltage th reshold voltage (for power loss calc. only) value 25 d8,d9,d10,d11,d12,d13 slope resistance (for power loss calc. only) v f v to r t conditions turn-off delay time in p ut capacitance turn-off energy loss per pulse collector-emitter saturation voltage turn-on energy loss per pulse collector-emitter cut-off current incl. diode reverse transfer capacitance rise time gate-emitter leakage current t r turn-on delay time output capacitance fall time 20 15 i ges v ge(th) v ce(sat) i ces v ce =v ge r gint q gate e off c ies q rr t rr c rss c oss t d(on) 0 vcc=960v t f e on t=25c t=100c 1670,313 3 -3 t=100c % v nc r g on=16 t d(off) - tj=25c 115 tj=25c 155 copyright vincotech 3 revision: 3.1
v23990-k220-a40-pm figure 1 t1,t2,t3,t4,t5,t6,t7 igbt figure 2 t1,t2,t3,t4,t5,t6,t7 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 15 0 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 t1 , t2,t3,t4,t5,t6,t7 igbt figure 4 d1,d2,d3,d4,d5,d6,d7 fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 1 0 v t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 typical output characteristics 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 4 revision: 3.1
v23990-k220-a40-pm figure 5 t1,t2,t3,t4,t5,t6,t7 igbt figure 6 t1,t2,t3,t4,t5,t6,t7 igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 8 i c = 35 a r goff = 8 figur e 7 t1 , t2,t3,t4,t5,t6,t7 igbt figure 8 t1,t2,t3,t4,t5,t6,t7 igbt typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 8 i c = 35 a t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 e on high t e off high t e on low t e off low t 0 2 4 6 8 1 0 0 1 5 30 45 60 75 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 15 30 45 60 75 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0 , 5 1 1,5 2 2,5 3 0 15 30 45 60 75 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,5 1 1,5 2 2,5 3 0 15 30 45 60 75 r g ( w ) e (mws) copyright vincotech 5 revision: 3.1
v23990-k220-a40-pm figure 9 t1,t2,t3,t4,t5,t6,t7 igbt figure 10 t1,t2,t3,t4,t5,t6,t7 igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 5 0 c t j = 15 0 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 8 i c = 35 a r goff = 8 figur e 11 d1 , d2,d3,d4,d5,d6,d7 fwd figure 12 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 35 a r gon = 8 v ge = 1 5 v t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 t doff t f t don t r 0,001 0 , 01 0,1 1 0 15 30 45 60 75 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0 , 2 0,4 0,6 0,8 0 15 30 45 60 75 r gon ( w ww w ) t rr ( m s) t doff t f t don t r 0,001 0 , 01 0,1 1 0 15 30 45 60 75 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0, 2 0,4 0,6 0,8 0 15 30 45 60 75 i c (a) t rr ( m s) copyright vincotech 6 revision: 3.1
v23990-k220-a40-pm figure 13 d1,d2,d3,d4,d5,d6,d7 fwd figure 14 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at a t at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 35 a r gon = 8 v ge = 1 5 v figure 15 d1 , d2,d3,d4,d5,d6,d7 fwd figure 16 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 35 a r gon = 8 v ge = 1 5 v t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 t j = t jmax - 25c i rrm t j = 25c 0 20 4 0 60 80 0 15 30 45 60 75 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 2 4 6 8 0 1 5 30 45 60 75 r gon ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 1 0 2 0 30 40 50 0 15 30 45 60 75 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 2 4 6 8 0 1 5 30 45 60 75 i c (a) q rr ( m c) copyright vincotech 7 revision: 3.1
v23990-k220-a40-pm figure 17 d1,d2,d3,d4,d5,d6,d7 fwd figure 18 d1,d2,d3,d4,d5,d6,d7 fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) d i 0 / dt,di rec /dt = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 35 a r gon = 8 v ge = 1 5 v figure 19 t1 , t2,t3,t4,t5,t6,t7 igbt figure 20 d1,d2,d3,d4,d5,d6,d7 fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = t p / t d = t p / t r thjh = 1 k /w r thjh = 1, 2 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,10 1,5e+00 0,08 2,1e+00 0,31 2,7e-01 0,33 2,4e-01 0,41 8,9e-02 0,50 6,6e-02 0,13 1,4e-02 0,22 1,3e-02 0,03 2,8e-03 0,10 2,3e-03 t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt di rec /dt 0 5 0 0 1000 1500 2000 2500 3000 0 15 30 45 60 75 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 80 0 1600 2400 3200 4000 4800 0 15 30 45 60 75 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt copyright vincotech 8 revision: 3.1
v23990-k220-a40-pm figure 21 t1,t2,t3,t4,t5,t6,t7 igbt figure 22 t1,t2,t3,t4,t5,t6,t7 igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c v ge = 15 v figure 23 d1, d2,d3,d4,d5,d6,d7 fwd figure 24 d1,d2,d3,d4,d5,d6,d7 fwd power dissipation as a for w ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 0 30 60 90 120 150 180 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 30 60 90 120 150 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 9 revision: 3.1
v23990-k220-a40-pm figure 25 t1,t2,t3,t4,t5,t6,t7 igbt figure 26 t1,t2,t3,t4,t5,t6,t7 igbt safe operating area as a function gat e voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at a t d = single pulse i c = 3 5 a t h = 80 oc v ge = 1 5 v t j = t jmax oc t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 100us 0 2 4 6 8 10 12 14 16 0 40 80 120 160 200 q g (nc) v ge (v) 240v 960v copyright vincotech 10 revision: 3.1
v23990-k220-a40-pm figure 1 d8,d9,d10,d11,d12,d13 diode figure 2 d8,d9,d10,d11,d12,d13 diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 1, 25 k/w figure 3 d8 , d9,d10,d11,d12,d13 diode figure 4 d8,d9,d10,d11,d12,d13 diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc d8,d9,d10,d11,d12,d13 0 15 30 45 60 75 0 0,5 1 1,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 30 60 90 120 0 30 60 90 120 150 t h ( o c) p tot (w) 0 10 20 30 40 50 0 30 60 90 120 150 t h ( o c) i f (a) copyright vincotech 11 revision: 3.1
v23990-k220-a40-pm figure 1 thermistor typical ptc characteristic as a function of temperature r t = f(t) thermistor ptc-typical temperature characteristic 1000 1 2 00 1400 1600 1800 2000 25 50 75 100 125 t (c) r/  copyright vincotech 12 revision: 3.1
v23990-k220-a40-pm t j 150 c r gon 16  r goff 16  figur e 1 ou t put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = - 1 5 v v ge (0%) = -1 5 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 35 a i c (100%) = 35 a t doff = 0 , 27  s t don = 0, 08  s t eoff = 0, 60  s t eon = 0, 39  s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 35 a i c (100%) = 35 a t f = 0 , 13  s t r = 0, 03  s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -30 - 1 0 10 30 50 70 90 110 130 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -30 0 30 6 0 90 120 150 180 2,7 2,8 2,9 3 3,1 3,2 3,3 3,4 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 4 0 60 80 100 120 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 time (us) % v ce i c t f i c10% i c 90% -3 0 0 30 60 90 120 150 180 2,7 2,8 2,9 3 3,1 3,2 3,3 time(us) % tr v ce ic copyright vincotech 1 3 r evision: 3.1
v23990-k220-a40-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 20 ,88 kw p on (100%) = 20 ,88 kw e off (100%) = 3, 18 mj e on (100%) = 3, 84 mj t eoff = 0, 60 s t eon = 0, 39 s figure 7 ou t put inverter fwd turn-off switching waveforms & definition of t rr v d (100%) = 60 0 v i d (100%) = 35 a i rrm (100%) = 23 a t rr = 0, 57 s switching definitions output inverter i c 1% v ge 90% -20 0 20 4 0 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -20 2 0 6 0 100 140 180 2,6 2,75 2,9 3,05 3,2 3,35 3,5 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% tr r -120 -80 -40 0 40 80 120 2,6 2,8 3 3,2 3,4 3,6 3,8 time(us) % i d v d fitted copyright vincotech 1 4 r evision: 3.1
v23990-k220-a40-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 3 5 a p rec (100%) = 20 ,88 kw q rr (100%) = 5, 40 c e rec (100%) = 2, 10 mj t qrr = 0, 80 s t erec = 0, 80 s switching definitions output inverter t qrr -100 - 5 0 0 50 100 150 2,6 2,8 3 3,2 3,4 3,6 3,8 4 % i d q rr time(us) -20 0 20 40 60 80 100 120 2,6 2,8 3 3,2 3,4 3,6 3,8 4 time(us) % p rec e rec te rec copyright vincotech 1 5 r evision: 3.1
v23990-k220-a40-pm version ordering code in datamatrix as in packaging barcode as with std lid (black v23990-k22-t-pm) v23990-k220-a40-/0a/-pm k220a40 k220a40-/0a/ with std lid (black v23990-k22-t-pm) and p12 v23990-k220-a40-/1a/-pm k220a40 k220a40-/1a/ with thin lid (white v23990-k23-t-pm) v23990-k220-a40-/0b/-pm k220a40 k220a40-/0b/ with thin lid (white v23990-k23-t-pm) and p12 v23990-k220-a40-/1b/-pm k220a40 k220a40-/1b/ outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 16 revision: 3.1
v23990-k220-a40-pm disclaimer l i fe support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 17 revision: 3.1


▲Up To Search▲   

 
Price & Availability of V23990-K220-A40-0B-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X